マンデルブロ集合は、複素数cについての関数
def mandel(c)
var i=0
x=0:while abs(x)<2:inc(i):x=x*x+c:wend
return i
end
が永遠に返って来ない(abs(x)が絶対に2以上にならない)ようなcの集合です。
画面写真の真っ黒い部分がマンデルブロ集合。色彩が美しいのは、実はマンデルブロ集合の外側です。
「結局何?」に対する回答は「集合の境界付近を、繰り返し数iの値で色を塗るととても美しい。かつどんなに拡大しても無限に複雑で美しい図形が次々に現れる」だから皆マンデルブロ集合の境界付近を10^16倍くらいまで拡大したがる。
しかし拡大すればするほど計算に時間がかかるという特徴もあります。マンデルブロ集合計算の高速化はそれ自体一つのテーマです。
This is mandelbrot set, a set of complex numbers that has a highly convoluted fractal boundary when plotted.
This screenshot seems very complicate, however the recursion to draw it is actually simple.
I'm not really understanding this. Oh well, maybe it's too hard for you to explain it in a way that I'll understand. Don't worry about trying to get me to understand it right now. I just need to learn more about coding, that's all.
The reason why it is difficult for me to explain is lack of my English vocabulary.
SıмΞоп in US SmileBASIC community has tried to make mandelbrot set drawer and his coloring algorithm is much better than mine. I recommend you to check his play diary.